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1. INTRODUCTION 
This project investigates stealthy techniques for mapping attack graphs through black-

box networks.  This provides a powerful new capability for network reconnaissance and 
attack planning, when open scanning is not an option.  We employ purely passive 
inference, as well as new hybrid passive/active techniques that provide more 
comprehensive attack plans while maintaining nearly zero risk of detection. 

We infer network configuration (topology, devices, services, etc.), as well as 
functional semantics of network components for intelligent targeting.  We map 
discovered network elements to potentially exploitable vulnerabilities.  From this we find 
the possible multi-step vulnerability paths through a target network, and recommend best 
courses of action (e.g., additional information to gather, new hosts to control).  We 
demonstrate purely passive inference of topology, protocols, and services of target 
networks, as well as a novel approach for stealthy scanning through firewalls via 
collaboration with an outside agent. 

Research contributions of this project include the following: 

 Methods of passive inference from network traffic: 
o OS detection via web browser user agent messages. 
o Detection of network services and their possible vulnerabilities. 
o Patterns of communication among workstations and servers. 
o IP packet time-to-live (TTL) for inferring network topology. 

 “Inside-Out  Collaborative  Scanning”  for stealthy network scanning: 

o Exploits inherent design weakness of current-generation 
firewalls. 

o Leverages insider presence (e.g., software agent) to create hole 
through firewall. 

o Allows outside collaborator to access (scan or exploit) arbitrary 
target machines inside network. 

o Insider sends only single packet to open a target port, spoofing 
the outside collaborative scanner address. 

o Insider never reveals own IP address. 
o Technique experimentally verified. 

 Overall system architecture for stealthy passive/active network 
reconnaissance tool. 

 Automatic discovery and change detection for Layer-2 devices 
(switches). 

 Capabilities for visual analysis and reasoning for network 
reconnaissance. 

 Mapping from discovered network elements (target subnets, hosts, 
services, connectivity, etc.) to input model for multi-step attack graph 
modeling for intelligent attack planning. 
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2. OVERVIEW OF APPROACH 
Figure 1 is an overview of our approach to stealthy inference and attack planning for 

black box networks.  In this approach, we infer as much as possible about a target 
network through purely passive observation.  We then use what is learned passively to 
guide stealthy active scanning techniques.  Network reconnaissance data, from both 
passive and active modes, are used as inputs for attack graph modeling.  Analysis of the 
resulting network model shows the possible multi-step paths through the target network, 
organized as a concise attack graph. 
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Figure 1: Components of stealthy black-box network attack planning. 

Through visual analysis and interactive navigation of the attack graph, analysts can 
plan optimal strategies for attack against the target network.  This may include steps for 
gathering more network reconnaissance data, or exerting greater control over the 
network.  Our approach is agent-based, in that software agents either inside the target 
network or cooperating agents outside the target network are used to gather and 
communicate reconnaissance data.  In some circumstances, the vantage points of inside 
agents may allow for penetration deeper into the target network, through deployment of 
new agents. 

In the simplest possible deployment architecture, shown in Figure 2(a), an inside 
agent is positioned inside a target network.  Such an inside agent could determine its own 
local host configuration, and could passively observe traffic within its network segment 
and infer some information about other hosts.  For example, it could detect which outside 
hosts are allowed to connect to target hosts, thus inferring firewall holes.  It could also 
detect services on target hosts, and in some cases operating systems and known 
vulnerabilities.  The inside agent could then communicate its reconnaissance data to an 
attack planning component outside the target network, e.g., via some covert channel.  
Although the details of such covert communication are outside the scope of this project, 
we note that firewalls and intrusion detection systems generally consider such outbound 
traffic benign.  Also, the inside agent could communicate to the outside by spoofing the 
address of another inside host, never revealing its own address. 
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Figure 2: Simple deployment architectures. 

As we describe in Section 4, we introduce new techniques for stealthy network 
reconnaissance that involve cooperation between the inside agent and an outside agent.  
This is depicted in Figure 2(b).  The inside agent sends minimal traffic to the outside 
agent, by spoofing the source address of an inside target host.  This opens a temporary 
hole in the firewall that allows the outside agent to connect to the target host.  Under this 
architecture, the outside agent must share its reconnaissance data with an attack planning 
component.  Ideally, this is done through an intermediary outside service that interfaces 
with the outside agent and stores its reconnaissance data.  That same service can then 
interact with the attack planning component to populate its predictive attack models. 
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Figure 3: Distributed deployment architecture. 

More realistic deployment architecture is depicted in Figure 3.  This shows inside 
agents deployed on two different segments of the target network.  For example, Inside 
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Agent A could have injected executable code into traffic destined for Target Segment B 
as it traversed its local Target Segment A, thus compromising a host in Segment B.  This 
architecture is more distributed than Figure 2, with both inside agents and outside agents 
communicating with one or more outside reconnaissance data servers.  This helps 
minimize detection by distributing over multiple destination addresses, as well as 
provides redundancy in the case of server or network failures.  Similarly, attack planning 
workstations could communicate with one or more reconnaissance data servers. 

3. PASSIVE NETWORK INFERRENCE 
A variety of reconnaissance data about a network may be gleaned passively.  This 

includes internal hosts in the network, as well as external hosts that communicate with 
them.  Host names, internet (IP) addresses, and hardware (MAC) addresses are readily 
detected for internal hosts, for the local segment of an inside agent.  To some degree of 
accuracy, host operating system and version can be fingerprinted, as well as client 
applications and services.  A  machine’s   logical   location   (number  of  network  hops) can 
also be inferred with some confidence.  Through analysis of the application layer, 
usernames and passwords can sometimes be discovered, as well as sensitive data.  
Indeed, some network components are discovered passively that are not discovered 
through active scanning [1][2][3][4][5], such as some client-side applications and their 
vulnerabilities, port-based trust relationships, or services that are not available during the 
time of the active scan.  Also, active scans are snapshots at a particular point in time, 
while passive scanning can work constantly. 

Currently available tools for passive network scanning include Tenable PVS 
(vulnerability scanner) [6], p0f [7] and ettercap [8] (OS fingerprinting), and Snort 
IDS [9], which can be configured for general-purpose traffic analysis.  Also, some 
commercial tools employ passive detection of hosts on the network, and then target those 
hosts with active scans. 

However, passive scanning does have significant limitations.  It cannot detect the 
patch level of a host OS, which is important for mapping to known vulnerabilities.  
Services that are available but not communicating with other hosts are not discovered.  
Moreover, in many cases detection accuracy is low.  In one study [10], a high error rate is 
reported for ettercap for passive OS fingerprinting.  Our own informal tests with the p0f 
tool showed significant OS misclassifications.  Also, while techniques exist for detecting 
services and their vulnerabilities, this largely relies on service banners, which can be 
easily changed by administrators. 

Because of the inherent limitations of passive network inference, we supplement 
purely passive techniques with stealthy active techniques.  We passively detect network 
hosts and their services, and then rely on cooperation with an outside agent for active 
scanning that detects vulnerabilities in those services.  We can also leverage the vantage 
point of an insider presence for injection attacks that deploy insider agents on other hosts, 
e.g., deeper in the network.  These hybrid passive/active techniques are described further 
in Section 4. 
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3.1 OS and Application Detection 
As an example of detecting a host OS passively, consider Figure 4.  This shows 

instances of Microsoft Windows Browser Protocol [11] (used for host name resolution), 
which we collected from live network traffic.  This protocol reports major and minor OS 
version.  This allows us to infer the OS to some degree of accuracy, based on known 
values for the various Windows platforms [12], as shown in Figure 5. 

(a)

(b)
 

Figure 4: MS Browser Protocol for OS detection. 

For example, the observed IP packet in Figure 4(a) shows Major 5/Minor 1.  From 
Figure 5, we infer that this host is running Windows XP or XP Service Pack 2.  From 
other detected packets shown in Figure 4(b), hosts with Major 4/Minor 9 and Major 
3/Minor 10 are older than Windows 98. 

 
Figure 5: Windows Major and Minor versions (from [12]). 

As another example, we employ passive inference to detect applications running on a 
host.  In this case, we detect web browsers being used on a host.  As shown in Figure 6, 
we passively observe HTTP User-Agent headers on the network.  Web clients use the 
User-Agent to report to web servers the kind of browser they are.  In this example, we 
install 3 different web browsers on a host – Internet Explorer, Firefox, and Safari.  We 
then use each browser to connect to a web server, and passively observe the web traffic.  
In Figure 6(a), Figure 6(b), and Figure 6(c), we show the observed User-Agent headers 
for Internet Explorer, Firefox, and Safari (respectively), along with the actual full version 
of each browser.  For Firefox and Safari, the User-Agent matches the actual 3-level 
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versions exactly.  For Internet Explorer, it correctly identifies to Version 7.0 (2 version 
levels).  An on-line database is available [13] giving User-Agent headers for a variety of 
web applications, including browsers, search engines, and web crawlers. 

(a)

(b)

(c)

 
Figure 6: User-Agent headers for web browser identification. 

3.2 Service Detection 
Other than host OS and client applications, we can also use passive inference to map 

services on a target network.  A basic function is the analysis of protocols observed in 
network traffic.  Figure 7 shows network traffic broken down by packets.  Each packet 
contains a number of protocols in the network stack.  For example, the first packet in 
Figure 7 is for address resolution (ARP), i.e., mapping from IP address to MAC address.  
Other packets might be for domain name resolution (DNS), mapping domain names to IP 
address, web (HTTP) packets, etc.  These higher-level protocols are encapsulated above 
the lower-level frames and Ethernet protocol. 

 
Figure 7: Structure of observed traffic packets. 

As an initial analysis, we show all observed packets, plotted by source and destination 
(Figure 8).  This represents 8,715 packets observed on a live network over the course of 
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about 15 minutes.  From this plot, we can infer the likely existence of 2 servers 
(columns), which are each communicating with multiple clients (rows). 

Destination IP

So
ur

ce
 IP

Inferred
Server Inferred

Server

 
Figure 8: Inferring two network servers. 

To further classify these servers, we go higher up the network stack and plot source 
and destination for traffic specific to DNS (Figure 9).  This clearly shows that we can 
infer the IP address of a DNS server (column) in this network.  Domain name resolution 
is a critical network service, so that this DNS server becomes an important potential 
attack target. 
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Figure 9: Inferring a DNS server. 

For this same traffic, we wish to understand which protocols are present beyond the 
routine network management protocols.  The idea is to get a better understanding of some 
of the application-layer traffic.  To do this, we exclude certain protocols from the 
analysis, as shown in Figure 10. 
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Figure 10: Set of excluded protocols. 

The resulting plot of source and destination addresses is in Figure 11.  From this, we 
infer the presence of a web server.  We also see isolated user of encrypted traffic (secure 
socket layer) and multicasting (e.g., for gaming or video streaming).  This kind of 
interesting traffic should be analyzed further on a target network.  We also infer the 
existence of a Windows network, including possible file sharing that could be vulnerable 
to attack. 
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Figure 11: Interesting inferred network activity. 

To make further inferences about passively observed traffic, we wish to go beyond 
protocol analysis, to determine exact network services and their versions.  This 
information would help us map service versions to known vulnerabilities.  One approach 
is to search network traffic for banners provided by services to their clients, which inform 
clients about service configuration.  But to do this requires a database of patterns that 
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match known service banners.  We can then passively observe when clients make their 
normal connections to a service, and match to our known pattern for that service banner. 

As an experiment for building a database of known service banners, we mine data 
from the Nessus vulnerability scanner [14].  In particular, we search through the set of 
Nessus scripts for active detection of vulnerabilities.  In the case of service banners, 
Nessus acts as a client, connecting to a target service, then analyzes the resulting banner 
for known patterns.  We analyze the Nessus scripts for a signature of such banner pattern 
matching.  With this method, we extracted almost 400 patterns for known service 
banners.  With this information, we can map directly to known vulnerabilities for those 
services.  Figure 12 shows examples of such service banner matching patterns. 

 
Figure 12: Sample patterns for detecting known network services. 

 

3.3 Network Communication Patterns 
Beyond simply enumerating hosts, operating systems, applications, and services on a 

target network, it is important to consider more complex interaction among these 
components.  For this, we employ visualization techniques to make such complex 
patterns easier to understand.  A basic kind of visual analysis is to show patterns of 
communication across the network, from traffic observed by an inside agent.  Because 
network traffic is so voluminous, it is important to do this kind of analysis at the right 
levels of abstraction for informed decision making. 

For example, consider Figure 13(a).  This shows patterns of network traffic at the 
packet level, which is too detailed for easy understanding.  In contrast, Figure 13(b) 
shows the same network traffic, this time aggregated to host-to-host communication.  The 
patterns of communication are much clearer. 

Thus aggregation serves to help manage complexity for larger network pattern 
graphs.  A complementary approach is to divide a pattern graphs into its connected 
components, in this case, set of intercommunicating hosts.  This is shown in Figure 14.  
Figure 14(a) shows host-to-host communication patterns for a given set of observed 
traffic.  Figure 14(b) shows the same patterns, but this time separated by connected 
components.  In this case we automatically detected 6 different connected components, 
and plotted them separately.  In an operational attack planning system, each component 
could be analyzed independently, focusing on a single set of intercommunicating hosts. 
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Figure 13: Levels of abstraction for network communication patterns. 

 

(a)

(b)
 

Figure 14: Separating traffic patterns into independent components. 

 

3.4 Local Segment Detection 
In our approach, attack graphs provide a powerful methodology for network attack 

planning.  A critical requirement for attack graph analysis is to know the different 
segments within a target network.  In our attack graph model, an important abstraction is 
the protection domain, which represents set of machines with full connectivity to one 
another’s  vulnerable  network  services, e.g., not filtered by firewalls. 

One approach is to infer the local segment of an inside agent host using the time to 
live (TTL) field of IP packets.  TTL is a limit on the number of network hops that a 
packet can make before it is discarded.  For each hop, the TTL value is decremented by 
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one.  By exploiting the fact that most operating systems use known initial values of TTL 
(powers of 2), we can infer the number of hops a packets has made at the point we 
observe it.  As an experiment, we analyze observed TTL values to infer which host are in 
the  inside  agent’s local segment.  If a host is observed as sending a packet with a known 
initial value, we infer that it is the initial source of this packet, and the host is thus in our 
local segment.  All other observed hosts are then inferred as being in different segments. 

Analysis of TTL for predicting network topology is not always accurate, particularly 
when using only passive techniques.  For example, packets crafted by custom 
applications (versus the operating system network stack) may have arbitrary initial 
values.  In our experiments, our heuristic correctly detects all hosts in the local segment if 
they send traffic.  But for hosts in the local segment that receive traffic only, and do not 
send it, our heuristic incorrectly classifies them as outside the local segment.  However, 
once such a host actually sends a packet with a known initial TTL value, we correctly 
classify it. 

Once we infer network hosts and classify them as inside or outside the local segment, 
we build a corresponding network model as input to attack graph analysis.  To generate 
such a network model, an inside agent observed 3,833 packets over a period of 11 
minutes on a live network.  We then applied TTL analysis to the observed traffic, 
inferring   a   set   of   119  hosts   on   the   agent’s   local   segment.  The remaining 47 observed 
hosts were inferred as communicating from outside the local segment.  For each outside 
host, if we observed communication with an inside host, we modeled that as a connection 
to a potentially vulnerable client or service on the inside host.  The resulting network 
model is shown in Figure 15. 

…

 
Figure 15: Inferred network model for input to attack graph analysis. 
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This network model is a first approximation for attack graph analysis.  To refine this 
model, we need to infer any known vulnerabilities with client or server software on the 
target hosts, e.g., though the techniques described in Sections 3.1 and 3.2.  Still, the 
network model in Figure 15 serves as a good initial input to an attack graph analysis, 
which we describe in Section 7. 

4. STEALTHY ACTIVE TECHNIQUES 
In general, stealthy exploitation of a target machine can be challenging.  In a perfect 

scenario, one would like to know extensive details about the target, including operating 
system version, patches, configurations, language packs, application versions and 
configurations, network connectivity, host protection mechanisms, and sometimes even 
the number of host CPUs [15]. 

Much of this target network information is simply not available through passive 
network observation.  Active vulnerability assessment tools such as Nessus avoid this 
problem by directly probing for vulnerabilities. For example to test for a particular 
buffer-overflow directory traversal vulnerability, a Nessus script might attempt to 
actually to  overflow   the   input  buffer  on  a   target  host’s   service,   and   then   traverse to an 
arbitrary file directory on the host.  While this approach works for blue-team 
vulnerability assessment, it is easily detected when stealth is required. 

For the first time, we introduce novel techniques that provide the accuracy of active 
scanning, while minimizing the risk of detection.  These involve a stealthy insider in the 
target network, with a cooperating outsider.  The advantage of this unique approach is 
that the outsider can generate active traffic for scanning and/or exploiting inside targets, 
while the insider remains stealthy.  This is a key factor in maintaining stealthy inside 
presence  in  the  target  network.    Our  adversaries  would  consider  the  outsider’s  traffic  as  
typical scanning attempts (e.g., via intrusion detection systems), or even ignored in cases 
where spoofed connections are initiated from the inside. 

We introduce two fundamental types of scanning operations: 

 Insider observation of existing firewall holes (Section 4.1) 
 Spoofed insider to open new firewall holes (Section 4.2) 

4.1 Insider Inference of Firewall Rules 
In this mode of insider/outsider scanning, we infer the state of one or more firewalls 

in a target network.  In particular, an outsider infers all firewall holes based on spoofed 
responses of a collaborating inside agent.  In this mode, the outsider discovers all firewall 
holes, versus scanning a single target IP/port. 

As shown in Figure 16, the insider passively observes traffic to estimate the IP 
address range of the target network segment.  This allows the outsider to focus the 
probing of firewall holes.  The insider passively observes which probe packets reach the 
inside (through the firewall), and then echoes those packets to the outsider (spoofing the 
other inside targets). 
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Figure 16: Stealthy inference of firewall holes in target network. 

In our approach, the outsider samples the firewall rule-set space, i.e., traffic source 
and destination IP addresses, subnet masks, protocols (TCP, UDP, etc.) and specific 
ports.  In this way, through feedback from the insider (spoofing the inside targets), the 
outsider can infer the entire set of policy rules enforced by a firewall.  In the case of 
multiple firewalls, this approach infers the combined policy enforced by all firewall 
layers. 

Figure 17 shows the structure of our inferred firewall policy, capturing net 
connectivity effects through one or more firewall layers.  Because of the observational 
nature of our approach, our policy model is stateless, with no dependencies among rules.  
Thus our model is much simpler and tractable than usual firewall specification languages.  

 
Figure 17: Structure of inferred firewall effects. 
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In our policy model, a firewall effects specification is a set of rules of connectivity 
allowed through firewall layers to inside targets.  Each rule specifies connectivity from a 
source  to  destination.    This  corresponds  to  “allow”  rules  in  usual  firewall configurations.  
Because we are observing traffic (generated by our outsider) allowed into the network, 
usual   “deny”   rules   do   not   apply   (i.e.,   their   effects   are   represented   implicitly).  In the 
configuration of operational firewall configurations, policy rules can overlap, be 
redundant, contradictory, etc.  But in our approach we observe firewalls as black boxes, 
so that we can normalize any such problematic rule sets definitions. 

Figure 18 shows example policy rules inferred through our approach.  Each rule has a 
source and destination for connectivity that is observed to be allowed through the 
firewall(s).  Sources or destinations can be single IP addresses, such as the source for the 
first example rule.  They can also be ranges of IP addresses, according to network masks 
as defined in actual firewall device configurations.  In the example, the second rule has 
such a source.  Our   policy  model   also   allows   the   special   case   of   “any”   source   and/or  
destination, meaning all possible IP addresses (e.g., the destination for the first example 
rule). 

 
Figure 18: Example inferred firewall policy rules. 

Our policy model also includes traffic protocols and destination ports for rules.  This 
means that only the specified protocols and ports are allowed in the observed traffic.  In 
our model, ports apply to destinations only (i.e., source ports are irrelevant), since an 



 15 

attacker can set their source port as needed.  Our inferred firewall policies are combined 
with knowledge of the vulnerabilities inferred for network targets, yielding single-step 
attack vectors to be combined into overall attack graphs. 

In this approach to firewall inference, the stealthy insider never reveals its own 
address, i.e., it spoofs the addresses of other network hosts being targeted.  Thus there is 
near zero risk of the insider being detected.  This approach works through multiple layers 
of firewalls for inferring the combined effects of all firewall rule layers.  Unlike purely 
passive approaches, we do not rely on opportunistic analysis of normal traffic.  Instead, 
our cooperating outside agent probes from outside the network the insider remains 
undetected. 

4.2 Opening Firewall Holes via Insider 
In this mode, rather than only testing/observing existing firewall holes, we leverage 

the vantage point of the insider to actually open new firewall holes to the outsider.  To the 
adversary employing standard intrusion detection technology, this appears as simply a 
normal outbound connection.  But in this case, the insider is spoofing an inside target to 
set up the outbound connection state. 

This technique exploits a flaw in the current generation firewalls, and gives the 
outsider unrestricted access to target hosts on the inside.  The inside agent sends a SYN 
packet to the outsider, spoofing a target insider host. 

Figure 19(a) depicts the usual situation when an outsider attempts to connect to an 
inside network protected by a firewall.  Assuming no firewall holes (allow rules) are 
available  from  the  outside,  the  attacker’s  TCP  SYN  packet  for  establishing  a  connection  
is dropped by the firewall.  However, the firewall allows traffic to flow unblocked inside 
the  network,  so  that  inside  hosts  can  connect  to  one  another’s  services  via  the usual TCP 
handshake (SYN, SNY-ACK, ACK). 

Insider

Target

Firewall

SYN

x.x.1.1

1.
 S

Y
N

x.
x.

1.
1,

 x
.x

.1
.2

3.
 A

C
K

x.
x.

1.
1,

 x
.x

.1
.2

x.x.1.2

2.
 S

Y
N

-A
C

K
x.

x.
1.

2,
 x

.x
.1

.1

Outsider
x.x.2.3

Outsider Blocked
Insider

Firewall

Target
x.x.1.2:80

x.x.1.1 Outsider
x.x.2.3

1. SYN (spoofed)
x.x.1.2:80, x.x.2.3:80

4. ACK
x.x.2.3:80, x.x.1.2:80

Hole Opened
By Inside Agent

2. SYN
x.x.2.3:80, x.x.1.2:80

3. SYN-ACK
x.x.1.2:80, x.x.2.3

(a) (b)
 

Figure 19: Inside agent opening firewall hole for outside agent. 
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Figure 19(b) shows our novel technique in which the insider opens a temporary hole 
in the firewall, allowing an outside agent to reach a target host on the inside.  The insider 
sends a packet to the outsider, spoofing the target host as the source address.  Firewalls 
are generally configured to allow such inside-initiated traffic.  The spoofed packet sets a 
state in the firewall in which subsequent traffic between the source/destination IP address 
and TCP ports are allowed.  In this case, this opens a temporary hole for a service on the 
target host. 

Without prior communication or agreement, the insider cannot predict the TCP port 
that the outsider will use to connect to the target.  In fact, using the usual client 
applications, the outside host does not know the port that will be allocated by its OS 
network stack.  We thus attempt the connection, detect the allocated port, and then use 
the next highest port number as the likely next one allocated (shown in Figure 20). 

Tcpdump on Outsider 

15:23:55.498242 IP (tos 0x0, ttl  64, id 1966, offset 0, flags [DF], proto: TCP (6), length: 52) 

129.174.10.20.rvs-isdn-dcp > 129.174.10.10.ms-wbt-server: ., cksum 0xb37e (correct), ack 84068 win 

7876 <nop,nop,timestamp 101126100 535574> 

15:23:55.500419 IP (tos 0x0, ttl  64, id 1967, offset 0, flags [DF], proto: TCP (6), length: 63) 

129.174.10.20.rvs-isdn-dcp > 129.174.10.10.ms-wbt-server: P, cksum 0xa9de (correct), 13064:13075(11) 

ack 84068 win 7876 <nop,nop,timestamp 101126102 535574> 

15:23:55.501182 IP (tos 0x0, ttl  64, id 1968, offset 0, flags [DF], proto: TCP (6), length: 52) 

129.174.10.20.rvs-isdn-dcp > 129.174.10.10.ms-wbt-server: F, cksum 0xb36f (correct), 13075:13075(0) 

ack 84068 win 7876 <nop,nop,timestamp 101126103 535574> 

15:23:55.503187 IP (tos 0x0, ttl 127, id 4088, offset 0, flags [DF], proto: TCP (6), length: 52) 

129.174.10.10.ms-wbt-server > 129.174.10.20.rvs-isdn-dcp: ., cksum 0xd973 (correct), ack 13076 win 

63680 <nop,nop,timestamp 535574 101126102> 

Router IP address RD server port Outsider IP address RD client port (dynamic)  
Figure 20: Outsider detects own allocated client port. 

The outsider then uses the firewall hole to communicate its predicted next allocated 
port to the inside agent.  This packet is sent to the spoofed inside target, but observed by 
the  inside  agent.     The  insider  then  spoofs  a  second  packet,   this   time  with  the  outsider’s  
predicted next port number.  A subsequent connection attempt by the outsider is then 
successful. 

We have implemented this stealthy active approach in our laboratory network.  Using 
a network configuration as in Figure 19, we implement the firewall function with a router 
configured to perform network address translation (NAT), with no port forwarding rules 
to allow connections from the outside.  With NAT, the outsider sees only the external IP 
address of the router, so any attempts at scanning or otherwise compromising the inside 
network are unsuccessful. 

The target host is running Windows XP, which by default allows connections to its 
remote desktop service [16], which allows another host to control its desktop remotely.  
Our inside agent opens a hole in the router, allowing the outside agent to connect to the 
target host and remotely control its desktop. 

Figure 21 shows the insider spoofing the first packet to open a hole in the router, 
communicating the target IP and port to the outsider.  It then monitors inbound traffic, 
looking for the response packet from the outsider.  At this point, it sends a second packet, 
opening  a  hole  for  the  outsider’s  remote  desktop  client  port. 
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Figure 21: Insider spoofs target host packets that open firewall. 

Figure 22 shows the sequence of events on the outside agent host.  The outsider first 
receives the spoofed packet from the target network, containing the target IP address and 
port.  It attempts to connect to that target with its remote desktop client and fails.  It 
observes the port number allocated by its OS, and then uses the firewall hole to send that 
message to the inside. 

 
Figure 22: Outsider tells insider its next client port number. 

After the insider sends a second packet with the correct client port, the outsider 
attempts   to   reconnect   to   the   target’s   remote   desktop   service.      This   time   the   attempt   is  
successful, and the outsider takes control of the target host, as shown in Figure 23. 
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Figure 23: Outsider has taken control of inside target host. 

From   the   firewall’s   point   of   view,   this   looks   like   the   spoofed   insider   trying to 
establish a normal outbound connection.  The firewall then allows subsequent traffic 
between the outsider and the spoofed insider, giving the outsider full access to the target 
(IP address and port).  For this technique, the inside agent sends only single packet, and 
never reveals his own address. 

5. DISCOVERY OF LAYER-2 TOPOLOGY 
Firewalls and routers filter traffic at the Network Layer (Layer 3) [17], e.g., TCP/IP.  

But there is growing use of devices (switches) that provide connectivity at the Data Link 
Layer (Layer 2).  For mapping the topology of target black-box networks, an important 
requirement is having accurate knowledge of Layer-2 connectivity. 

We introduce an automated approach for discovering Layer-2 topology [18].  This 
approach leverages Layer-2 forwarding behavior.  It creates packet probes that reveal and 
monitor underlying ethernet network topology.  In some scenarios, this approach works 
for Layer-3 network elements as well. 

Unlike previous approaches, we do not depend on network support, e.g., special 
protocols, management software or even software agents running on target network hosts.  
This approach is therefore ideal for black-box network topology discovery.  We measure 
network physical propagation parameters including Round Trip Time (RTT) and packet 
loss to infer the position of switches and connected hosts.  We demonstrates accurate 
discovery of physical network topology, with reasonable computation time even for fairly 
large networks. 

In previous work, there have been few solutions for automatic physical topology 
discovery, and none of them are appropriate for black-box networks.  These generally 
rely on very restricting deployment scenarios, such as support for Simple Network 
Management Protocol (SNMP) [19], vendor-specific products, or pre-installed software.  
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We introduce a novel approach that automates the topology discovery of the ethernet 
infrastructure of black-box networks.  This approach explores the network from one or 
more vantage points using a specially crafted sequence of Address Resolution Protocol 
(ARP) [20] and TCP ping probes. 

As shown in Figure 24, we employ a two-phase algorithm that exposes the structure 
of the underlying ethernet network observed from each vantage point.  During the first 
phase, local hosts are discovered through ARP and ping broadcast requests, obtaining 
approximate network distance from the probing point in terms of Round Trip Time 
(RTT).  Through statistical analysis we accurately estimate the number of intermediate 
hops to generate a rough map of the underlying network topology. 

 
Figure 24: Exposing network structure from a vantage point. 

The second phase (independent and complementary to the first phase) transmits 
specially crafted ARP packets to every host.  These packets leverage updating of ARP 
forwarding table in ethernet switches to measure the common physical segments between 
pairs of probed hosts. At the end of the second phase, we have a relative distance map. 

We combine the hop distances from the first phase with the map from the second 
phase to construct a complete map of the physical topology of the target network.  We 
can do this because in an ethernet network point all networks can be modeled as trees 
[21].  Therefore, all paths from the probing point (root) to two different nodes (leaves) of 
the tree are Y-shaped.  Knowing the distance from the root to each leaf (from the first 
phase) and the length of the shared part of the two connecting paths (from the second 
phase) we infer the complete topology. 

5.1 Network Distance Inference 
The first phase of our approach estimates network distance in terms of hops between 

the probing point and each reachable host.  We measure the RTT of TCP ping packets 
and tune a linear model for pair-wise network distances.  To initially enumerate reachable 
active hosts, we send a broadcast ARP packet to get their MAC addresses, and then send 
a standard ARP packet to each host to discover IP addresses.  Our experiments 
demonstrate that larger packet sizes (i.e., Jumboframes [22] versus standard Ethernet 
frames) provide more accurate measurements. 



 20 

Our experiments show that the sorted answering times of a single host have a typical 
pattern.  This pattern has a central plateau representing steady state network behavior, 
with two outer zones for exceptionally fast/slow answering times (considered noise).  We 
introduce a first-order derivative filter extracts the central plateau.  This is shown 
in Figure 25.  In the figure, there are four hosts with growing topological distance (hops).  
The blue area shows the data extracted by the filter.  This reduces the average confidence 
interval (95%) from 12.30μs  to  1.68μs  (86.34% improvement). 

 
Figure 25: Plateau isolation filter improves estimation of network distances. 

In general, the measured RTT between two hosts A and B is the sum of the time the 
packet spends in these places: 

 Network interface A 
 Peripheral switch connected to A 
 Internal networking (unknown topology) 
 Peripheral switch connected to B 
 Network interface B 

The probe has two network interfaces with known time for ping packet generation.  We 
can leverage the probe timing information to compute switching time of any intermediate 
Layer-2 switching device to which it is connected.  For directly connected switches, we 
use two local hosts (source and destination), with switching times through a simple 
difference. 

We then estimate the intercept and slope of the line modeling the growth of the RTT, 
as shown in Figure 26.  From this we infer actual distance: a measured RTT is compared 
to predicted RTTs and inherits the distance from the closest one.  For all our test cases (in 
our laboratory and in Deterlab [23]), we correctly infer all distances where Jumboframe 
support is active. 
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Figure 26: Inferring network distance from RTT growth model. 

 

5.2 Shared Path Inference 
The first phase of our topology discovery gives the distance from the probing point to 

each reachable host.  But this alone is not enough to reconstruct the complete topology.  
We know a certain number of hops are needed to reach a host, but not their relative 
positions.  Our second phase amends this and estimates approximate distances between 
host pairs.  For two hosts A and B with hop distances DA and DB from the probe, we find 
parameter SAB representing the degree of overlap between paths from probe to each host. 

 
Figure 27: Parameter representing path overlap from probe to two hosts. 
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Figure 27 shows possible values of SAB (non-zero because the switch to which the 
probe is plugged is shared by all paths).  To measure SAB, we inject two ARP streams: 
one is broadcast for ARP spoofing; the other is directed to a single host to sample 
network status. 

As an example, consider the switch-based topology in Figure 28.  We measure 
parameter S for host pairs Target to Host 1 (STH1) and Target to Host 2 (STH2). 

 
Figure 28: Example network for Layer-2 topology discovery. 

As shown in Figure 29, the probe sends a broadcast request containing (as sender 
MAC) the address of the target host.  As sender the probe uses its own real IP address, 
and as receiver it uses the IP address of the Target host.  Since the network has only 
Layer-2 or Layer-3 switches, we use only the Ethernet header for forwarding and 
updating forwarding tables. 

When this stream propagates through the network, all the crossed switches update 
their forwarding tables to forward the traffic directed to the Target host to the Probe 
(coherently with the broadcast Ethernet header).  This affects only the switches along the 
path between the two hosts.  When the target host sees the stream, it creates a stream of 
answers directed to a host that has its same MAC address but a different IP.  These 
answers travel back to the probe, forcing the switches to again update their forwarding 
tables, restoring the initial condition. 
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Figure 29: Broadcast ARP request and answer. 

Figure 30 shows the final effects of this broadcast ARP stream on the forwarding 
tables of the switches in the target network.  For a certain period of time, each switch 
along the path will forward packets directed to the target host to the probe.  This 
Temporary Diverting Window (TDW) is minimal for the switch directly connected to the 
Target host, and grows linearly getting closer to the probe. 

 
Figure 30: Effects of broadcast ARP stream on switch forwarding tables. 
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The second ARP stream measures the size of the TDW created by the first stream, to 
infer the shared part of the two paths.  It is a series of ARP requests to another host, with 
target MAC as sender address for the ARP protocol and real probe MAC address in the 
ethernet header.  Figure 31 shows the configuration of the stream to Host 1.  Each packet 
generates an answer packet coming from Host 1.  Since the answer packet must be 
delivered to a MAC address shared by both probe and target host, its actual forwarding 
path will depend on the state of the forwarding tables of the intermediate switches. 

 
Figure 31: ARP direct request and answer. 

If the second stream is directed to a direct neighbor of the target (e.g., Host 1), the 
vast majority of answers will be forwarded to the target, since the TDW on the last switch 
is very small.  If it is directed to a host closer to the probe (e.g., Host 2) a larger number 
of packets will be diverted to the probe.  This stream of packets is a form of sampling, 
i.e., each packet gives information about the status of the temporal window. 

6. NETWORK MONITORING AND CHANGE DETECTION 
Continuous improvements in the forwarding capacity of Layer-2 switching devices 

are re-shaping the networking landscape and present new challenges to black-box 
network inference.  Multitudes of endpoint devices such as laptops to smart-phones are 
connected to target networks using switching infrastructure.  This makes network 
topology discovery and monitoring even more challenging, but provides new 
opportunities for network attack. 

We describe scalable fingerprinting mechanisms that can monitor network topology 
changes, detect new active devices, and identify changes in available capacity of target 
networks [24]. These mechanisms can also automatically generate the connectivity 
mapping of large-scale network topologies and report any modifications.  Efficiency and 
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accuracy of these mechanisms have been experimentally validated on mixed-speed and 
mixed-vendor networks. 

Our goal is to measure various aspects of a target network state automatically and 
periodically identify changes in the underlying network topology, network devices, end-
point systems, and network capacity.  In our approach, detecting changes is a matter of 
simple statistical analysis, showing deviation from a baseline state. 

We extract topological information from the network through measuring, for any two 
hosts, how the paths connecting them to a network probe relate to each other.  Two 
streams of ARP packets are crafted to sample the network state.  Our technique of 
triangular sampling allows us to create a snapshot of the current topological state of the 
network.  The extracted information can be used to monitor evolution of a target network. 

6.1 Triangular Sampling 
We perform a triangular sampling operation to gather information about the network 

topology.  Each triangular sampling produces two streams of ARP packets, and explores 
the network connectivity between the probe and two other hosts.  We perform the 
samplings on any two active hosts: one host acts as Target (T) and the other one as 
Support (S). 

Each sampling is independent from the others, allowing us to break the measuring 
process into several sessions for maintaining stealth.  To perform a single triangular 
sampling two ARP streams are injected in the network: one is broadcast and performs an 
ARP manipulation technique focused on target host T, the other one is a stream of 
gratuitous ARPs directed to S and is used to sample the status of the network. 

The first ARP stream is a broadcast request containing, as sender MAC, the address 
of the target host.  When the stream propagates through the network all the crossed 
switches update their forwarding tables to redirect the traffic addressed to the target host 
to the probe, coherently with the broadcast Ethernet header.  That change actually affects 
only the switches along the path between the two hosts, since all other hosts need to pass 
through the connecting path anyway. 

The stream reaches the target host it answers with a stream directed to a host that has 
its same MAC address, but a different IP.  This stream of answers travels back to the 
probe, and forces all the switches to update again their forwarding tables, restoring the 
initial condition.  Each switch along the path, for a certain period of time, will forward 
the packets directed to the target host to the probe.  This diversion window is minimal for 
the switch directly connected to the target host, and grows getting closer to the probe. 

The second stream is used to sample the size of the diversion window created by the 
first stream.  It consists of a series of gratuitous ARP requests to another host, using the 
target host MAC as sender address for the ARP protocol, and using the real probe MAC 
address in the Ethernet header.  Since the answer packet must be delivered to a MAC 
address which is shared by the probe and the target host, its actual forwarding path will 
depend on the state of the forwarding tables of the intermediate switches. 
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If the second stream is addressed to a direct neighbor of the target host, the vast 
majority of the answers will be forwarded to the target host, since the diversion window 
on the last switch is minimal. If the second stream targets a host closer to the probe, a 
bigger number of packets will be diverted to the probe.  Our triangular samplings wield 
information on the current topology status.  In particular, it can be used to infer the extent 
of overlap in the paths connecting the probe to any other two hosts. 

Triangular samplings modify network connectivity for a brief period of time.  This 
change is very limited, especially with guaranteed delivery protocols such as TCP.  A 
single triangular sampling lasts for a RTT between the probe and a target host.  Of that 
time, only a fraction causes actual connectivity disruption. 

Still, we introduce an extra safeguard for ensuring stealth.  If the probe starts 
receiving regular traffic addressed to the target host (or if it receives more than a fixed 
amount of packets), it immediately stops testing.  In our experiments, with this safeguard 
in place there was no measurable disruption in connectivity.  

On average, we observe generated network traffic of 16 Kbps during triangular 
samplings.  From the network point of view this is negligible overhead on the target 
network infrastructure. 

6.2 Topology Reconstruction 
We introduce the network distance matrix, which is an alternate representation of a 

network tree topology.  We can infer the distance matrix from triangular samplings for 
network topology reconstruction. 

In a given tree topology, with a chosen root node, we can define the distance from the 
root to any leaf node.  Intuitively, this distance represents the number of network devices 
that need to be crossed by a packet traveling from root to leaf.  The two paths connecting 
the root to two nodes will overlap to some degree.  We measure the common part of the 
two paths, for any two hosts, in a symmetric distance matrix.  Figure 32 shows a distance 
matrix for an example network. 

(a) (b)
 

Figure 32: Example network topology (a) and its distance matrix (b). 
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The distance matrix is unique for any tree topology, and we can build one starting 
from the other.  In particular, our probes measure host distances, yielding the distance 
matrix, from which we infer the network topology. 

Triangular samplings have a direct relationship with the distance matrix.  Figure 33 
shows the triangular samplings from a sample network topology.  The samplings tend to 
cluster, and in a homogeneous network follow a linear model.  Our experimental 
evidence shows that hierarchical clustering performs better in separating the values for 
inferring the distance matrix from the matrix of all triangular samplings. 

 
Figure 33: Clustering triangular samplings. 

A complete sampling of the whole network requires a triangular sample for each 
possible pair of hosts.  The time required for a full network exploration grows 
quadratically with the number of hosts.  A single triangular sampling takes 15-20 
seconds, depending on network speed.  With 100 hosts, a naïve complete sampling would 
take about 27 hours.  

To reduce the number of tests, we introduce a technique that eliminates the intrinsic 
redundancy of full network explorations and allows us to extract topology information 
without doing a full host-to-host sampling. 

Hosts connected to the same switch share the same topological information.  Each of 
these  “island”  hosts  can  be  considered  a  single  entity  made  by  homogeneous  components.    
All hosts from a specific island will expose a similar behavior toward triangular 
samplings, since only the topological position influences the tests.  We can then select a 
single host from each island and use it as a representative for all other hosts sharing the 
same switch. 

The actual gain of this method depends on host sampling order and on the specific 
topology shape.  Flat topologies with many hosts per island will allow a great reduction 
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in the number of required samples.  Very vertical topologies with many small islands will 
limit its effectiveness.  For an experimental network with 30 switches and 90 hosts we 
measure an effective reduction of triangular samplings between 534% and 796%. 

6.3 Experiments 
The target of our experiments is to validate the ability to correctly infer the distance 

matrix, since it is equivalent to the network topology. 

In our experiments, we use the Mininet [25] on a Dell PowerEdge R715 server with 
128 GB of Ram and two 12 core CPUs.  The Mininet environment facilitates the 
implementation and testing of new ideas in network research.  It exploits Linux kernel 
name-spaces to simulate hosts with their own network stack.  Mininet exposes a python 
software interface to define the networks, which allow us to easily implement large scale 
topologies for testing. 

In our experiments we simulate networks with up to 30 switches and up to 90 hosts. 
Figure 34 shows a sample topology from our experiments.  Our test topologies have three 
hosts per switch.  We classify the topologies on their depth, i.e., the maximum distance of 
a host from the probe. 

 
Figure 34: Example network topology for testing. 

Figure 35 shows the averages of the clustering correctness for several values of 
network depth and number of hosts.  The lines marked as linear indicate a simple line 
topology, where no branches were present.  This topology is the simplest configuration, 
which we use as an experimental reference.  For nonlinear topologies, we test different 
configurations and report the averages of clustering correctness. 
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Figure 35: Clustering correctness for various network sizes. 

Our approach correctly detects all the tested network topologies up to depth five.  At 
depth six there are a few clustering errors, caused by a less sharp division in triangular 
samplings values.  Still, with very wide topologies of depth seven we limit errors to about 
10% of the network hosts. 

7. MULTI-STEP ATTACK GRAPH MODELING 
As described in Section 3.4, we passively infer communications to sets of hosts in a 

local segment, and use that information to build a model of the target network for attack 
graph analysis. 

In particular, as an initial model, we use the TTL field of IP packets to distinguish 
hosts as either inside or outside the local network segment of a passively observing agent.  
In this case, the agent observes 3,833 packets over a period of 11 minutes, from which we 
infer 119 hosts on the local segment and 47 outside hosts.  Communication between a 
pair of inside and outside hosts is modeled as a connection to a potentially vulnerable 
client or service on the inside host. 

The resulting attack graph in Figure 36 shows the attack paths from outside hosts into 
hosts in the target network.  The summary view in Figure 36(a) shows 24 different attack 
vectors into the target network.  Expanding to the view in Figure 36(b), this shows that all 
24 potential attack vectors are against a single target host. 

There are 118 additional hosts in the target network (aggregated to a single graph 
node), but none of those are exposed directly from the outside.  This initial model does 
not distinguish whether outside hosts are actually in the same or different segments, i.e., 
all outside hosts are placed in a common protection domain. 
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(a)

(b)

 
Figure 36: Attack graph showing outsiders attacking insiders. 

For a more refined attack graph model, we use TTL values to infer traffic as 
originating in separate (versus a common) source segments.  The resulting attack graph 
shows potential attackers as starting from different network segments (modeled as 
protection domains), based on differing TTL values from the source hosts. 

This relies on the fact that operating systems  generally  set  a  packet’s  initial  TTL  to  a  
known value, e.g., 64, 128, or 255.  Network devices decrement TTL, so we use TTL to 
infer the number of hops from the initial source host.  In this way we group hosts by 
common TTL values (more specifically, common deltas from default values).  This is 
necessary but not sufficient for accurately predicting hosts in the same segment, though 
we could further group by IP address similarities.  Figure 37 is the histogram of observed 
values TTL, e.g., showing large number of packets with TTL = 128 (originating from the 
local segment). 
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In this more refined analysis of TTL values, if a host sends a packet with known 
(powers of 2) initial value, we infer that it is in the local segment of the inside observing 
agent.  In this case, we infer 119 inside hosts. 

Outside hosts (47 inferred hosts) that send packets to inside hosts are then grouped in 
separate protection domains (14 inferred outside domains) according to common source 
TTL values.  These outside hosts are modeled as having connections to potentially 
vulnerable software on an inside host, i.e., in our database of modeled attacker 
exploitations.  Figure 38 shows the resulting network model, which we use as input to 
multi-step attack graph analysis. 

…

 
Figure 38: Network model with attackers in multiple segments. 

Figure 39 shows the attack graph resulting from multi-step attack analysis of the 
network model in Figure 38.  This shows potential attacks originating from each of the 
outside protection domains, where these domains are based on our TTL analysis.  From 
the top of the figure, this shows that there are 7 outside segments that each has a single 
attack possible against the target segment.  Similarly, from the bottom of the figure, there 
are 4 outside segments that each has 2 possible attacks against the target, and 3 outside 
segments that each has 3 possible attacks against the target. 
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Figure 39: Attack graph with attackers in multiple segments. 

In this attack graph, still only single-step attacks appear, although from multiple 
origins.  This is a result of deploying only a single inside observing agent, which has a 
limited view of network traffic.  That is, TTL values only give the number of network 
hops between source hosts and the observing agent. 

Vantage points in multiple segments are needed for inferring potential attacks among 
other segments.  Thus, multiple inside agents deployed in different segments of a target 
network yield more complex multi-steep attack graphs. 

Figure 40 shows our full-featured tool for interactive attack graph analysis and 
visualization.  This tool was developed for active scanning of white-box networks, i.e., 
for network attack defense [26][27][28][29][30].  In this project, we populate our attack 
graph tool via passive and stealthy active inference of black-box networks, for strategic 
attack planning. 
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Figure 40: Tool for attack-graph based strategic planning. 
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